Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(9)2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38732205

RESUMO

The tumor microenvironment is affected by reactive oxygen species and has been suggested to have an important role in ovarian cancer (OC) tumorigenesis. The role of glutathione transferases (GSTs) in the maintenance of redox balance is considered as an important contributing factor in cancer, including OC. Furthermore, GSTs are mostly encoded by highly polymorphic genes, which further highlights their potential role in OC, known to originate from accumulated genetic changes. Since the potential relevance of genetic variations in omega-class GSTs (GSTO1 and GSTO2), with somewhat different activities such as thioltransferase and dehydroascorbate reductase activity, has not been clarified as yet in terms of susceptibility to OC, we aimed to investigate whether the presence of different GSTO1 and GSTO2 genetic variants, individually or combined, might represent determinants of risk for OC development. Genotyping was performed in 110 OC patients and 129 matched controls using a PCR-based assay for genotyping single nucleotide polymorphisms. The results of our study show that homozygous carriers of the GSTO2 variant G allele are at an increased risk of OC development in comparison to the carriers of the referent genotype (OR1 = 2.16, 95% CI: 0.88-5.26, p = 0.08; OR2 = 2.49, 95% CI: 0.93-6.61, p = 0.06). Furthermore, individuals with GST omega haplotype H2, meaning the concomitant presence of the GSTO1*A and GSTO2*G alleles, are more susceptible to OC development, while carriers of the H4 (*A*A) haplotype exhibited lower risk of OC when crude and adjusted haplotype analysis was performed (OR1 = 0.29; 95% CI: 0.12-0.70; p = 0.007 and OR2 = 0.27; 95% CI: 0.11-0.67; p = 0.0054). Overall, our results suggest that GSTO locus variants may confer OC risk.


Assuntos
Alelos , Predisposição Genética para Doença , Glutationa Transferase , Neoplasias Ovarianas , Polimorfismo de Nucleotídeo Único , Humanos , Feminino , Neoplasias Ovarianas/genética , Glutationa Transferase/genética , Pessoa de Meia-Idade , Genótipo , Adulto , Idoso , Estudos de Casos e Controles , Frequência do Gene
2.
J Trace Elem Med Biol ; 74: 127081, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36152465

RESUMO

BACKGROUND: As a consequence of the progressive decline in human semen quality in recent decades, modern epidemiological investigations have identified several trace elements that could be responsible for this phenomenon. However, their levels in semen have not been clearly elucidated, particularly for elements present in ultra-trace levels. METHODS: We aimed to determine the levels of 39 (ultra)trace elements and 5 macroelements in human semen samples with confirmed normozoospermia using ICP-based techniques. The research was amplified by analyzing blood samples from the same participants. RESULTS: Among the analyzed (ultra)trace elements in semen samples, Zn is the most and Tm is the least prominent. Zn levels in semen are so high that Zn should be considered as a macroelement in this matrix. The levels of Zn, Rh, Sm, Re, Ir, Tl, Na, and Ca were significantly higher in semen, while the levels of Cu, As, Rb, Gd, Sb, Tb, Tm, Lu, K, and Fe were significantly higher in blood. Correlation analysis of the levels of 44 individual elements in paired semen and blood samples revealed positive correlations between 43 of the elements, particularly for Tl and Pt. An exception was the negative correlation for Cu, which showed that its high level in semen is associated with a low level in blood and contrariwise. CONCLUSION: The reported data can be used as baseline levels/reference values for 44 elements in human semen. Furthermore, the findings of this study could be relevant for further consideration of male infertility.


Assuntos
Sêmen , Oligoelementos , Humanos , Masculino , Sêmen/química , Análise do Sêmen , Oligoelementos/análise
3.
Environ Sci Pollut Res Int ; 29(25): 37375-37383, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35060029

RESUMO

Progressive industrialization in recent decades has contributed to the increase of metal levels in the environment, which has a dangerous impact on human health, primarily pregnant women. In this study, we aimed to compare levels of various elements in maternal and umbilical cord (UC) plasma samples collected from 125 healthy pregnant women, conduct correlation analysis among paired plasma samples, and compare our data with other populations worldwide. The study design included the following elements: essential (Mn, Co, Cu, Zn, Se, Mo), non-essential (Be, Al, Ni, As, Rb, Sr, Cd, Sb, Pb, U), rare earth (La, Pr, Ce, Nd, Sm, Eu, Gd, Dy, Ho, Er), and noble metals (Ru, Rh, Re, Pt). Levels of 30 elements were higher in maternal plasma than in UC plasma samples. However, no disparities at the statistically significant level were found for Be, Zn, Rb, Cd, Ce, and Ho. Correlation analysis among paired plasma samples revealed only positive/synergistic correlations of different strengths between most elements. Compared to other countries across the globe, our participants had considerably lower plasma levels of Zn and higher levels of Co, Ni, and As. This study provides not only a new and deeper comprehension, but also the first insight into the levels, correlation, distribution, and potential transplacental transfer of 30 elements.


Assuntos
Metais Terras Raras , Oligoelementos , Cádmio , Feminino , Sangue Fetal/química , Humanos , Gravidez , Oligoelementos/análise
4.
Biol Trace Elem Res ; 200(8): 3482-3490, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34613583

RESUMO

Pheochromocytoma (PCC) is an unusual benign adrenal tumor with an unexamined status of the elements. This study delivers the first insight into the levels of microelements (Mn, Co, Cu, Zn, As, Se, Th), toxic elements (Cd, Pb, U), and macroelements (Na, K, Mg, Ca) in both adrenal tissue and whole blood samples collected from PCC patients. The results were strengthened by comparing recorded findings with the patients' healthy adrenal tissue (HAT) and with whole blood samples from the healthy individuals. PCCs had significantly higher levels of Zn, Se, Na, K, and Mg and lower levels of Mn, Co, Pb, and As than that of HATs. Compared to healthy blood samples, the patients' blood exhibited considerably higher levels of Na, K, and Ca but significantly lower levels of Mn, Cu, Zn, Se, and Mg. Females had significantly higher levels of essential Se and toxic Pb and Cd in their PCC tissue samples compared to males. PCC tissue levels of Mn and Cu were significantly elevated in smokers over levels in nonsmokers and in PCC patients with tumor sizes below 5 cm compared to PCC diameters above 5 cm. The data presented in this study provide a new insight into the pathophysiology of PCC. Thus, recorded elements should be considered as initiators/modifiers of PCC and potential inductors of malignant transformation. The findings of this research deepen scientific understanding of this rare adrenal disease, which, in turn, could highlight the pathogenesis of PCC.


Assuntos
Neoplasias das Glândulas Suprarrenais , Feocromocitoma , Oligoelementos , Neoplasias das Glândulas Suprarrenais/patologia , Cádmio , Feminino , Humanos , Chumbo , Masculino , Feocromocitoma/patologia
5.
Mol Syndromol ; 11(2): 104-109, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32655342

RESUMO

Mutations in the skeletal muscle ryanodine receptor (RYR1) gene have been linked to malignant hyperthermia susceptibility, central core disease, and minicore myopathy with external ophthalmoplegia. RYR1 is an intracellular calcium release channel and plays a crucial role in the sarcoplasmic reticulum and transverse tubule connection. Here, we report 2 fetuses from the same parents with compound heterozygous mutations in the RYR1 gene (c.10347+1G>A and c.10456-2Α>G) who presented with fetal akinesia and polyhydramnios at 27 and 19 weeks of gestation with intrauterine growth restriction in the third pregnancy. The prospective parents of the fetuses were heterozygous carriers for c.10456-2Α>G (mother) and c.10347+1G>A (father). Both mutations affect splice sites resulting in dysfunctional protein forms probably missing crucial domains of the C-terminus. Our findings reveal a new RYR1 splice site mutation (c.10456-2Α>G) that may be associated with the clinical features of myopathies, expanding the RYR1 spectrum related to these pathologies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...